package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
val get_py : string -> Py.Object.t

Get an attribute of this module as a Py.Object.t. This is useful to pass a Python function to another function.

module ComplexWarning : sig ... end
module Parameter : sig ... end
module Suppress : sig ... end
val as_float_array : ?copy:bool -> ?force_all_finite:[ `Allow_nan | `Bool of bool ] -> x:[> `ArrayLike ] Np.Obj.t -> unit -> [> `ArrayLike ] Np.Obj.t

Converts an array-like to an array of floats.

The new dtype will be np.float32 or np.float64, depending on the original type. The function can create a copy or modify the argument depending on the argument copy.

Parameters ---------- X : array-like, sparse matrix

copy : bool, optional If True, a copy of X will be created. If False, a copy may still be returned if X's dtype is not a floating point type.

force_all_finite : boolean or 'allow-nan', (default=True) Whether to raise an error on np.inf, np.nan, pd.NA in X. The possibilities are:

  • True: Force all values of X to be finite.
  • False: accepts np.inf, np.nan, pd.NA in X.
  • 'allow-nan': accepts only np.nan and pd.NA values in X. Values cannot be infinite.

.. versionadded:: 0.20 ``force_all_finite`` accepts the string ``'allow-nan'``.

.. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan`

Returns ------- XT : array, sparse matrix An array of type np.float

val assert_all_finite : ?allow_nan:bool -> x:[> `ArrayLike ] Np.Obj.t -> unit -> Py.Object.t

Throw a ValueError if X contains NaN or infinity.

Parameters ---------- X : array or sparse matrix

allow_nan : bool

val check_X_y : ?accept_sparse:[ `S of string | `StringList of string list | `Bool of bool ] -> ?accept_large_sparse:bool -> ?dtype: [ `S of string | `Dtype of Np.Dtype.t | `Dtypes of Np.Dtype.t list | `None ] -> ?order:[ `C | `F ] -> ?copy:bool -> ?force_all_finite:[ `Allow_nan | `Bool of bool ] -> ?ensure_2d:bool -> ?allow_nd:bool -> ?multi_output:bool -> ?ensure_min_samples:int -> ?ensure_min_features:int -> ?y_numeric:bool -> ?estimator:[> `BaseEstimator ] Np.Obj.t -> x:[> `ArrayLike ] Np.Obj.t -> y:[> `ArrayLike ] Np.Obj.t -> unit -> Py.Object.t * Py.Object.t

Input validation for standard estimators.

Checks X and y for consistent length, enforces X to be 2D and y 1D. By default, X is checked to be non-empty and containing only finite values. Standard input checks are also applied to y, such as checking that y does not have np.nan or np.inf targets. For multi-label y, set multi_output=True to allow 2D and sparse y. If the dtype of X is object, attempt converting to float, raising on failure.

Parameters ---------- X : nd-array, list or sparse matrix Input data.

y : nd-array, list or sparse matrix Labels.

accept_sparse : string, boolean or list of string (default=False) Strings representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error.

accept_large_sparse : bool (default=True) If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by accept_sparse, accept_large_sparse will cause it to be accepted only if its indices are stored with a 32-bit dtype.

.. versionadded:: 0.20

dtype : string, type, list of types or None (default='numeric') Data type of result. If None, the dtype of the input is preserved. If 'numeric', dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list.

order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style.

copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion.

force_all_finite : boolean or 'allow-nan', (default=True) Whether to raise an error on np.inf, np.nan, pd.NA in X. This parameter does not influence whether y can have np.inf, np.nan, pd.NA values. The possibilities are:

  • True: Force all values of X to be finite.
  • False: accepts np.inf, np.nan, pd.NA in X.
  • 'allow-nan': accepts only np.nan or pd.NA values in X. Values cannot be infinite.

.. versionadded:: 0.20 ``force_all_finite`` accepts the string ``'allow-nan'``.

.. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan`

ensure_2d : boolean (default=True) Whether to raise a value error if X is not 2D.

allow_nd : boolean (default=False) Whether to allow X.ndim > 2.

multi_output : boolean (default=False) Whether to allow 2D y (array or sparse matrix). If false, y will be validated as a vector. y cannot have np.nan or np.inf values if multi_output=True.

ensure_min_samples : int (default=1) Make sure that X has a minimum number of samples in its first axis (rows for a 2D array).

ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when X has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check.

y_numeric : boolean (default=False) Whether to ensure that y has a numeric type. If dtype of y is object, it is converted to float64. Should only be used for regression algorithms.

estimator : str or estimator instance (default=None) If passed, include the name of the estimator in warning messages.

Returns ------- X_converted : object The converted and validated X.

y_converted : object The converted and validated y.

val check_array : ?accept_sparse:[ `S of string | `StringList of string list | `Bool of bool ] -> ?accept_large_sparse:bool -> ?dtype: [ `S of string | `Dtype of Np.Dtype.t | `Dtypes of Np.Dtype.t list | `None ] -> ?order:[ `C | `F ] -> ?copy:bool -> ?force_all_finite:[ `Allow_nan | `Bool of bool ] -> ?ensure_2d:bool -> ?allow_nd:bool -> ?ensure_min_samples:int -> ?ensure_min_features:int -> ?estimator:[> `BaseEstimator ] Np.Obj.t -> array:Py.Object.t -> unit -> Py.Object.t

Input validation on an array, list, sparse matrix or similar.

By default, the input is checked to be a non-empty 2D array containing only finite values. If the dtype of the array is object, attempt converting to float, raising on failure.

Parameters ---------- array : object Input object to check / convert.

accept_sparse : string, boolean or list/tuple of strings (default=False) Strings representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error.

accept_large_sparse : bool (default=True) If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by accept_sparse, accept_large_sparse=False will cause it to be accepted only if its indices are stored with a 32-bit dtype.

.. versionadded:: 0.20

dtype : string, type, list of types or None (default='numeric') Data type of result. If None, the dtype of the input is preserved. If 'numeric', dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list.

order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. When order is None (default), then if copy=False, nothing is ensured about the memory layout of the output array; otherwise (copy=True) the memory layout of the returned array is kept as close as possible to the original array.

copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion.

force_all_finite : boolean or 'allow-nan', (default=True) Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are:

  • True: Force all values of array to be finite.
  • False: accepts np.inf, np.nan, pd.NA in array.
  • 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite.

.. versionadded:: 0.20 ``force_all_finite`` accepts the string ``'allow-nan'``.

.. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan`

ensure_2d : boolean (default=True) Whether to raise a value error if array is not 2D.

allow_nd : boolean (default=False) Whether to allow array.ndim > 2.

ensure_min_samples : int (default=1) Make sure that the array has a minimum number of samples in its first axis (rows for a 2D array). Setting to 0 disables this check.

ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when the input data has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check.

estimator : str or estimator instance (default=None) If passed, include the name of the estimator in warning messages.

Returns ------- array_converted : object The converted and validated array.

val check_consistent_length : Py.Object.t list -> Py.Object.t

Check that all arrays have consistent first dimensions.

Checks whether all objects in arrays have the same shape or length.

Parameters ---------- *arrays : list or tuple of input objects. Objects that will be checked for consistent length.

val check_is_fitted : ?attributes: [ `S of string | `StringList of string list | `Arr of [> `ArrayLike ] Np.Obj.t ] -> ?msg:string -> ?all_or_any:[ `Callable of Py.Object.t | `PyObject of Py.Object.t ] -> estimator:[> `BaseEstimator ] Np.Obj.t -> unit -> Py.Object.t

Perform is_fitted validation for estimator.

Checks if the estimator is fitted by verifying the presence of fitted attributes (ending with a trailing underscore) and otherwise raises a NotFittedError with the given message.

This utility is meant to be used internally by estimators themselves, typically in their own predict / transform methods.

Parameters ---------- estimator : estimator instance. estimator instance for which the check is performed.

attributes : str, list or tuple of str, default=None Attribute name(s) given as string or a list/tuple of strings Eg.: ``'coef_', 'estimator_', ..., 'coef_'``

If `None`, `estimator` is considered fitted if there exist an attribute that ends with a underscore and does not start with double underscore.

msg : string The default error message is, 'This %(name)s instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.'

For custom messages if '%(name)s' is present in the message string, it is substituted for the estimator name.

Eg. : 'Estimator, %(name)s, must be fitted before sparsifying'.

all_or_any : callable, all, any, default all Specify whether all or any of the given attributes must exist.

Returns ------- None

Raises ------ NotFittedError If the attributes are not found.

val check_memory : [ `S of string | `Object_with_the_joblib_Memory_interface of Py.Object.t | `None ] -> Py.Object.t

Check that ``memory`` is joblib.Memory-like.

joblib.Memory-like means that ``memory`` can be converted into a joblib.Memory instance (typically a str denoting the ``location``) or has the same interface (has a ``cache`` method).

Parameters ---------- memory : None, str or object with the joblib.Memory interface

Returns ------- memory : object with the joblib.Memory interface

Raises ------ ValueError If ``memory`` is not joblib.Memory-like.

val check_non_negative : x:[> `ArrayLike ] Np.Obj.t -> whom:string -> unit -> Py.Object.t

Check if there is any negative value in an array.

Parameters ---------- X : array-like or sparse matrix Input data.

whom : string Who passed X to this function.

val check_random_state : [ `Optional of [ `I of int | `None ] | `RandomState of Py.Object.t ] -> Py.Object.t

Turn seed into a np.random.RandomState instance

Parameters ---------- seed : None | int | instance of RandomState If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError.

val check_scalar : ?min_val:[ `I of int | `F of float ] -> ?max_val:[ `I of int | `F of float ] -> x:Py.Object.t -> name:string -> target_type:[ `Dtype of Np.Dtype.t | `Tuple of Py.Object.t ] -> unit -> Py.Object.t

Validate scalar parameters type and value.

Parameters ---------- x : object The scalar parameter to validate.

name : str The name of the parameter to be printed in error messages.

target_type : type or tuple Acceptable data types for the parameter.

min_val : float or int, optional (default=None) The minimum valid value the parameter can take. If None (default) it is implied that the parameter does not have a lower bound.

max_val : float or int, optional (default=None) The maximum valid value the parameter can take. If None (default) it is implied that the parameter does not have an upper bound.

Raises ------- TypeError If the parameter's type does not match the desired type.

ValueError If the parameter's value violates the given bounds.

val check_symmetric : ?tol:float -> ?raise_warning:bool -> ?raise_exception:bool -> array:[> `ArrayLike ] Np.Obj.t -> unit -> [> `ArrayLike ] Np.Obj.t

Make sure that array is 2D, square and symmetric.

If the array is not symmetric, then a symmetrized version is returned. Optionally, a warning or exception is raised if the matrix is not symmetric.

Parameters ---------- array : nd-array or sparse matrix Input object to check / convert. Must be two-dimensional and square, otherwise a ValueError will be raised. tol : float Absolute tolerance for equivalence of arrays. Default = 1E-10. raise_warning : boolean (default=True) If True then raise a warning if conversion is required. raise_exception : boolean (default=False) If True then raise an exception if array is not symmetric.

Returns ------- array_sym : ndarray or sparse matrix Symmetrized version of the input array, i.e. the average of array and array.transpose(). If sparse, then duplicate entries are first summed and zeros are eliminated.

val column_or_1d : ?warn:bool -> y:[> `ArrayLike ] Np.Obj.t -> unit -> [> `ArrayLike ] Np.Obj.t

Ravel column or 1d numpy array, else raises an error

Parameters ---------- y : array-like

warn : boolean, default False To control display of warnings.

Returns ------- y : array

val has_fit_parameter : estimator:[> `BaseEstimator ] Np.Obj.t -> parameter:string -> unit -> bool

Checks whether the estimator's fit method supports the given parameter.

Parameters ---------- estimator : object An estimator to inspect.

parameter : str The searched parameter.

Returns ------- is_parameter: bool Whether the parameter was found to be a named parameter of the estimator's fit method.

Examples -------- >>> from sklearn.svm import SVC >>> has_fit_parameter(SVC(), 'sample_weight') True

val indexable : Py.Object.t list -> Py.Object.t

Make arrays indexable for cross-validation.

Checks consistent length, passes through None, and ensures that everything can be indexed by converting sparse matrices to csr and converting non-interable objects to arrays.

Parameters ---------- *iterables : lists, dataframes, arrays, sparse matrices List of objects to ensure sliceability.

val isclass : Py.Object.t -> Py.Object.t

Return true if the object is a class.

Class objects provide these attributes: __doc__ documentation string __module__ name of module in which this class was defined

val parse_version : Py.Object.t -> Py.Object.t

None

val signature : ?follow_wrapped:Py.Object.t -> obj:Py.Object.t -> unit -> Py.Object.t

Get a signature object for the passed callable.

val wraps : ?assigned:Py.Object.t -> ?updated:Py.Object.t -> wrapped:Py.Object.t -> unit -> Py.Object.t

Decorator factory to apply update_wrapper() to a wrapper function

Returns a decorator that invokes update_wrapper() with the decorated function as the wrapper argument and the arguments to wraps() as the remaining arguments. Default arguments are as for update_wrapper(). This is a convenience function to simplify applying partial() to update_wrapper().

OCaml

Innovation. Community. Security.