package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `MiniBatchDictionaryLearning
]
type t = [ `BaseEstimator | `MiniBatchDictionaryLearning | `Object | `SparseCodingMixin | `TransformerMixin ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val as_transformer : t -> [ `TransformerMixin ] Obj.t
val as_estimator : t -> [ `BaseEstimator ] Obj.t
val as_sparse_coding : t -> [ `SparseCodingMixin ] Obj.t
val create : ?n_components:int -> ?alpha:float -> ?n_iter:int -> ?fit_algorithm:[ `Lars | `Cd ] -> ?n_jobs:int -> ?batch_size:int -> ?shuffle:bool -> ?dict_init:[> `ArrayLike ] Np.Obj.t -> ?transform_algorithm:[ `Lasso_lars | `Lasso_cd | `Lars | `Omp | `Threshold ] -> ?transform_n_nonzero_coefs:[ `T_0_1_ of Py.Object.t | `I of int ] -> ?transform_alpha:float -> ?verbose:int -> ?split_sign:bool -> ?random_state:int -> ?positive_code:bool -> ?positive_dict:bool -> ?transform_max_iter:int -> unit -> t

Mini-batch dictionary learning

Finds a dictionary (a set of atoms) that can best be used to represent data using a sparse code.

Solves the optimization problem::

(U^*,V^* ) = argmin 0.5 || Y - U V ||_2^2 + alpha * || U ||_1 (U,V) with || V_k ||_2 = 1 for all 0 <= k < n_components

Read more in the :ref:`User Guide <DictionaryLearning>`.

Parameters ---------- n_components : int, number of dictionary elements to extract

alpha : float, sparsity controlling parameter

n_iter : int, total number of iterations to perform

fit_algorithm : 'lars', 'cd' lars: uses the least angle regression method to solve the lasso problem (linear_model.lars_path) cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). Lars will be faster if the estimated components are sparse.

n_jobs : int or None, optional (default=None) Number of parallel jobs to run. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details.

batch_size : int, number of samples in each mini-batch

shuffle : bool, whether to shuffle the samples before forming batches

dict_init : array of shape (n_components, n_features), initial value of the dictionary for warm restart scenarios

transform_algorithm : 'lasso_lars', 'lasso_cd', 'lars', 'omp', 'threshold' Algorithm used to transform the data. lars: uses the least angle regression method (linear_model.lars_path) lasso_lars: uses Lars to compute the Lasso solution lasso_cd: uses the coordinate descent method to compute the Lasso solution (linear_model.Lasso). lasso_lars will be faster if the estimated components are sparse. omp: uses orthogonal matching pursuit to estimate the sparse solution threshold: squashes to zero all coefficients less than alpha from the projection dictionary * X'

transform_n_nonzero_coefs : int, ``0.1 * n_features`` by default Number of nonzero coefficients to target in each column of the solution. This is only used by `algorithm='lars'` and `algorithm='omp'` and is overridden by `alpha` in the `omp` case.

transform_alpha : float, 1. by default If `algorithm='lasso_lars'` or `algorithm='lasso_cd'`, `alpha` is the penalty applied to the L1 norm. If `algorithm='threshold'`, `alpha` is the absolute value of the threshold below which coefficients will be squashed to zero. If `algorithm='omp'`, `alpha` is the tolerance parameter: the value of the reconstruction error targeted. In this case, it overrides `n_nonzero_coefs`.

verbose : bool, optional (default: False) To control the verbosity of the procedure.

split_sign : bool, False by default Whether to split the sparse feature vector into the concatenation of its negative part and its positive part. This can improve the performance of downstream classifiers.

random_state : int, RandomState instance or None, optional (default=None) Used for initializing the dictionary when ``dict_init`` is not specified, randomly shuffling the data when ``shuffle`` is set to ``True``, and updating the dictionary. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`.

positive_code : bool Whether to enforce positivity when finding the code.

.. versionadded:: 0.20

positive_dict : bool Whether to enforce positivity when finding the dictionary.

.. versionadded:: 0.20

transform_max_iter : int, optional (default=1000) Maximum number of iterations to perform if `algorithm='lasso_cd'` or `lasso_lars`.

.. versionadded:: 0.22

Attributes ---------- components_ : array, n_components, n_features components extracted from the data

inner_stats_ : tuple of (A, B) ndarrays Internal sufficient statistics that are kept by the algorithm. Keeping them is useful in online settings, to avoid losing the history of the evolution, but they shouldn't have any use for the end user. A (n_components, n_components) is the dictionary covariance matrix. B (n_features, n_components) is the data approximation matrix

n_iter_ : int Number of iterations run.

iter_offset_ : int The number of iteration on data batches that has been performed before.

random_state_ : RandomState RandomState instance that is generated either from a seed, the random number generattor or by `np.random`.

Notes ----- **References:**

J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009: Online dictionary learning for sparse coding (https://www.di.ens.fr/sierra/pdfs/icml09.pdf)

See also -------- SparseCoder DictionaryLearning SparsePCA MiniBatchSparsePCA

val fit : ?y:Py.Object.t -> x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> t

Fit the model from data in X.

Parameters ---------- X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features.

y : Ignored

Returns ------- self : object Returns the instance itself.

val fit_transform : ?y:[> `ArrayLike ] Np.Obj.t -> ?fit_params:(string * Py.Object.t) list -> x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a transformed version of X.

Parameters ---------- X : array-like, sparse matrix, dataframe of shape (n_samples, n_features)

y : ndarray of shape (n_samples,), default=None Target values.

**fit_params : dict Additional fit parameters.

Returns ------- X_new : ndarray array of shape (n_samples, n_features_new) Transformed array.

val get_params : ?deep:bool -> [> tag ] Obj.t -> Dict.t

Get parameters for this estimator.

Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns ------- params : mapping of string to any Parameter names mapped to their values.

val partial_fit : ?y:Py.Object.t -> ?iter_offset:int -> x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> t

Updates the model using the data in X as a mini-batch.

Parameters ---------- X : array-like, shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features.

y : Ignored

iter_offset : integer, optional The number of iteration on data batches that has been performed before this call to partial_fit. This is optional: if no number is passed, the memory of the object is used.

Returns ------- self : object Returns the instance itself.

val set_params : ?params:(string * Py.Object.t) list -> [> tag ] Obj.t -> t

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object.

Parameters ---------- **params : dict Estimator parameters.

Returns ------- self : object Estimator instance.

val transform : x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Encode the data as a sparse combination of the dictionary atoms.

Coding method is determined by the object parameter `transform_algorithm`.

Parameters ---------- X : array of shape (n_samples, n_features) Test data to be transformed, must have the same number of features as the data used to train the model.

Returns ------- X_new : array, shape (n_samples, n_components) Transformed data

val components_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute components_: get value or raise Not_found if None.

val components_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute components_: get value as an option.

val inner_stats_ : t -> [> `ArrayLike ] Np.Obj.t * [> `ArrayLike ] Np.Obj.t

Attribute inner_stats_: get value or raise Not_found if None.

val inner_stats_opt : t -> ([> `ArrayLike ] Np.Obj.t * [> `ArrayLike ] Np.Obj.t) option

Attribute inner_stats_: get value as an option.

val n_iter_ : t -> int

Attribute n_iter_: get value or raise Not_found if None.

val n_iter_opt : t -> int option

Attribute n_iter_: get value as an option.

val iter_offset_ : t -> int

Attribute iter_offset_: get value or raise Not_found if None.

val iter_offset_opt : t -> int option

Attribute iter_offset_: get value as an option.

val random_state_ : t -> Py.Object.t

Attribute random_state_: get value or raise Not_found if None.

val random_state_opt : t -> Py.Object.t option

Attribute random_state_: get value as an option.

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.