package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
val get_py : string -> Py.Object.t

Get an attribute of this module as a Py.Object.t. This is useful to pass a Python function to another function.

module LinearSVC : sig ... end
module LinearSVR : sig ... end
module NuSVC : sig ... end
module NuSVR : sig ... end
module OneClassSVM : sig ... end
module SVC : sig ... end
module SVR : sig ... end
val l1_min_c : ?loss:[ `Squared_hinge | `Log ] -> ?fit_intercept:bool -> ?intercept_scaling:float -> x:[> `ArrayLike ] Np.Obj.t -> y:[> `ArrayLike ] Np.Obj.t -> unit -> float

Return the lowest bound for C such that for C in (l1_min_C, infinity) the model is guaranteed not to be empty. This applies to l1 penalized classifiers, such as LinearSVC with penalty='l1' and linear_model.LogisticRegression with penalty='l1'.

This value is valid if class_weight parameter in fit() is not set.

Parameters ---------- X : array-like, sparse matrix of shape (n_samples, n_features) Training vector, where n_samples in the number of samples and n_features is the number of features.

y : array-like of shape (n_samples,) Target vector relative to X.

loss : 'squared_hinge', 'log', default='squared_hinge' Specifies the loss function. With 'squared_hinge' it is the squared hinge loss (a.k.a. L2 loss). With 'log' it is the loss of logistic regression models.

fit_intercept : bool, default=True Specifies if the intercept should be fitted by the model. It must match the fit() method parameter.

intercept_scaling : float, default=1.0 when fit_intercept is True, instance vector x becomes x, intercept_scaling, i.e. a 'synthetic' feature with constant value equals to intercept_scaling is appended to the instance vector. It must match the fit() method parameter.

Returns ------- l1_min_c : float minimum value for C

OCaml

Innovation. Community. Security.