package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `ElasticNetCV
]
type t = [ `BaseEstimator | `ElasticNetCV | `MultiOutputMixin | `Object | `RegressorMixin ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val as_estimator : t -> [ `BaseEstimator ] Obj.t
val as_regressor : t -> [ `RegressorMixin ] Obj.t
val as_multi_output : t -> [ `MultiOutputMixin ] Obj.t
val create : ?l1_ratio:[ `Fs of float list | `F of float ] -> ?eps:float -> ?n_alphas:int -> ?alphas:[> `ArrayLike ] Np.Obj.t -> ?fit_intercept:bool -> ?normalize:bool -> ?precompute:[ `Arr of [> `ArrayLike ] Np.Obj.t | `Auto | `Bool of bool ] -> ?max_iter:int -> ?tol:float -> ?cv: [ `BaseCrossValidator of [> `BaseCrossValidator ] Np.Obj.t | `Arr of [> `ArrayLike ] Np.Obj.t | `I of int ] -> ?copy_X:bool -> ?verbose:int -> ?n_jobs:int -> ?positive:bool -> ?random_state:int -> ?selection:[ `Cyclic | `Random ] -> unit -> t

Elastic Net model with iterative fitting along a regularization path.

See glossary entry for :term:`cross-validation estimator`.

Read more in the :ref:`User Guide <elastic_net>`.

Parameters ---------- l1_ratio : float or list of float, default=0.5 float between 0 and 1 passed to ElasticNet (scaling between l1 and l2 penalties). For ``l1_ratio = 0`` the penalty is an L2 penalty. For ``l1_ratio = 1`` it is an L1 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1 and L2 This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``.1, .5, .7, .9, .95, .99, 1``

eps : float, default=1e-3 Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``.

n_alphas : int, default=100 Number of alphas along the regularization path, used for each l1_ratio.

alphas : ndarray, default=None List of alphas where to compute the models. If None alphas are set automatically

fit_intercept : bool, default=True whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize : bool, default=False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``.

precompute : 'auto', bool or array-like of shape (n_features, n_features), default='auto' Whether to use a precomputed Gram matrix to speed up calculations. If set to ``'auto'`` let us decide. The Gram matrix can also be passed as argument.

max_iter : int, default=1000 The maximum number of iterations

tol : float, default=1e-4 The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``.

cv : int, cross-validation generator or iterable, default=None Determines the cross-validation splitting strategy. Possible inputs for cv are:

  • None, to use the default 5-fold cross-validation,
  • int, to specify the number of folds.
  • :term:`CV splitter`,
  • An iterable yielding (train, test) splits as arrays of indices.

For int/None inputs, :class:`KFold` is used.

Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here.

.. versionchanged:: 0.22 ``cv`` default value if None changed from 3-fold to 5-fold.

copy_X : bool, default=True If ``True``, X will be copied; else, it may be overwritten.

verbose : bool or int, default=0 Amount of verbosity.

n_jobs : int, default=None Number of CPUs to use during the cross validation. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details.

positive : bool, default=False When set to ``True``, forces the coefficients to be positive.

random_state : int, RandomState instance, default=None The seed of the pseudo random number generator that selects a random feature to update. Used when ``selection`` == 'random'. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`.

selection : 'cyclic', 'random', default='cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4.

Attributes ---------- alpha_ : float The amount of penalization chosen by cross validation

l1_ratio_ : float The compromise between l1 and l2 penalization chosen by cross validation

coef_ : ndarray of shape (n_features,) or (n_targets, n_features) Parameter vector (w in the cost function formula),

intercept_ : float or ndarray of shape (n_targets, n_features) Independent term in the decision function.

mse_path_ : ndarray of shape (n_l1_ratio, n_alpha, n_folds) Mean square error for the test set on each fold, varying l1_ratio and alpha.

alphas_ : ndarray of shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio.

n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha.

Examples -------- >>> from sklearn.linear_model import ElasticNetCV >>> from sklearn.datasets import make_regression

>>> X, y = make_regression(n_features=2, random_state=0) >>> regr = ElasticNetCV(cv=5, random_state=0) >>> regr.fit(X, y) ElasticNetCV(cv=5, random_state=0) >>> print(regr.alpha_) 0.199... >>> print(regr.intercept_) 0.398... >>> print(regr.predict([0, 0])) 0.398...

Notes ----- For an example, see :ref:`examples/linear_model/plot_lasso_model_selection.py <sphx_glr_auto_examples_linear_model_plot_lasso_model_selection.py>`.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array.

The parameter l1_ratio corresponds to alpha in the glmnet R package while alpha corresponds to the lambda parameter in glmnet. More specifically, the optimization objective is::

1 / (2 * n_samples) * ||y - Xw||^2_2

  1. alpha * l1_ratio * ||w||_1
  2. 0.5 * alpha * (1 - l1_ratio) * ||w||^2_2

If you are interested in controlling the L1 and L2 penalty separately, keep in mind that this is equivalent to::

a * L1 + b * L2

for::

alpha = a + b and l1_ratio = a / (a + b).

See also -------- enet_path ElasticNet

val fit : x:[> `ArrayLike ] Np.Obj.t -> y:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> t

Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

Parameters ---------- X : array-like, sparse matrix of shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output, X can be sparse.

y : array-like of shape (n_samples,) or (n_samples, n_targets) Target values

val get_params : ?deep:bool -> [> tag ] Obj.t -> Dict.t

Get parameters for this estimator.

Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns ------- params : mapping of string to any Parameter names mapped to their values.

val predict : x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Predict using the linear model.

Parameters ---------- X : array_like or sparse matrix, shape (n_samples, n_features) Samples.

Returns ------- C : array, shape (n_samples,) Returns predicted values.

val score : ?sample_weight:[> `ArrayLike ] Np.Obj.t -> x:[> `ArrayLike ] Np.Obj.t -> y:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> float

Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters ---------- X : array-like of shape (n_samples, n_features) Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.

y : array-like of shape (n_samples,) or (n_samples, n_outputs) True values for X.

sample_weight : array-like of shape (n_samples,), default=None Sample weights.

Returns ------- score : float R^2 of self.predict(X) wrt. y.

Notes ----- The R2 score used when calling ``score`` on a regressor uses ``multioutput='uniform_average'`` from version 0.23 to keep consistent with default value of :func:`~sklearn.metrics.r2_score`. This influences the ``score`` method of all the multioutput regressors (except for :class:`~sklearn.multioutput.MultiOutputRegressor`).

val set_params : ?params:(string * Py.Object.t) list -> [> tag ] Obj.t -> t

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object.

Parameters ---------- **params : dict Estimator parameters.

Returns ------- self : object Estimator instance.

val alpha_ : t -> float

Attribute alpha_: get value or raise Not_found if None.

val alpha_opt : t -> float option

Attribute alpha_: get value as an option.

val l1_ratio_ : t -> float

Attribute l1_ratio_: get value or raise Not_found if None.

val l1_ratio_opt : t -> float option

Attribute l1_ratio_: get value as an option.

val coef_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute coef_: get value or raise Not_found if None.

val coef_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute coef_: get value as an option.

val intercept_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute intercept_: get value or raise Not_found if None.

val intercept_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute intercept_: get value as an option.

val mse_path_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute mse_path_: get value or raise Not_found if None.

val mse_path_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute mse_path_: get value as an option.

val alphas_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute alphas_: get value or raise Not_found if None.

val alphas_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute alphas_: get value as an option.

val n_iter_ : t -> int

Attribute n_iter_: get value or raise Not_found if None.

val n_iter_opt : t -> int option

Attribute n_iter_: get value as an option.

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.