package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
val get_py : string -> Py.Object.t

Get an attribute of this module as a Py.Object.t. This is useful to pass a Python function to another function.

module DictVectorizer : sig ... end
module FeatureHasher : sig ... end
module Image : sig ... end
module Text : sig ... end
val grid_to_graph : ?n_z:int -> ?mask:[ `Dtype_bool of Py.Object.t | `Arr of [> `ArrayLike ] Np.Obj.t ] -> ?return_as:Py.Object.t -> ?dtype:Np.Dtype.t -> n_x:int -> n_y:int -> unit -> Py.Object.t

Graph of the pixel-to-pixel connections

Edges exist if 2 voxels are connected.

Parameters ---------- n_x : int Dimension in x axis n_y : int Dimension in y axis n_z : int, default=1 Dimension in z axis mask : ndarray of shape (n_x, n_y, n_z), dtype=bool, default=None An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, default=sparse.coo_matrix The class to use to build the returned adjacency matrix. dtype : dtype, default=int The data of the returned sparse matrix. By default it is int

Notes ----- For scikit-learn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected.

For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues.

val img_to_graph : ?mask:[ `Dtype_bool of Py.Object.t | `Arr of [> `ArrayLike ] Np.Obj.t ] -> ?return_as:Py.Object.t -> ?dtype:Np.Dtype.t -> img:[> `ArrayLike ] Np.Obj.t -> unit -> Py.Object.t

Graph of the pixel-to-pixel gradient connections

Edges are weighted with the gradient values.

Read more in the :ref:`User Guide <image_feature_extraction>`.

Parameters ---------- img : ndarray of shape (height, width) or (height, width, channel) 2D or 3D image. mask : ndarray of shape (height, width) or (height, width, channel), dtype=bool, default=None An optional mask of the image, to consider only part of the pixels. return_as : np.ndarray or a sparse matrix class, default=sparse.coo_matrix The class to use to build the returned adjacency matrix. dtype : dtype, default=None The data of the returned sparse matrix. By default it is the dtype of img

Notes ----- For scikit-learn versions 0.14.1 and prior, return_as=np.ndarray was handled by returning a dense np.matrix instance. Going forward, np.ndarray returns an np.ndarray, as expected.

For compatibility, user code relying on this method should wrap its calls in ``np.asarray`` to avoid type issues.

OCaml

Innovation. Community. Security.