Latent Dirichlet Allocation with online variational Bayes algorithm
.. versionadded:: 0.17
Read more in the :ref:`User Guide <LatentDirichletAllocation>`.
Parameters ---------- n_components : int, optional (default=10) Number of topics.
.. versionchanged:: 0.19 ``n_topics `` was renamed to ``n_components``
doc_topic_prior : float, optional (default=None) Prior of document topic distribution `theta`. If the value is None, defaults to `1 / n_components`. In 1
_, this is called `alpha`.
topic_word_prior : float, optional (default=None) Prior of topic word distribution `beta`. If the value is None, defaults to `1 / n_components`. In 1
_, this is called `eta`.
learning_method : 'batch' | 'online', default='batch' Method used to update `_component`. Only used in :meth:`fit` method. In general, if the data size is large, the online update will be much faster than the batch update.
Valid options::
'batch': Batch variational Bayes method. Use all training data in each EM update. Old `components_` will be overwritten in each iteration. 'online': Online variational Bayes method. In each EM update, use mini-batch of training data to update the ``components_`` variable incrementally. The learning rate is controlled by the ``learning_decay`` and the ``learning_offset`` parameters.
.. versionchanged:: 0.20 The default learning method is now ``'batch'``.
learning_decay : float, optional (default=0.7) It is a parameter that control learning rate in the online learning method. The value should be set between (0.5, 1.0] to guarantee asymptotic convergence. When the value is 0.0 and batch_size is ``n_samples``, the update method is same as batch learning. In the literature, this is called kappa.
learning_offset : float, optional (default=10.) A (positive) parameter that downweights early iterations in online learning. It should be greater than 1.0. In the literature, this is called tau_0.
max_iter : integer, optional (default=10) The maximum number of iterations.
batch_size : int, optional (default=128) Number of documents to use in each EM iteration. Only used in online learning.
evaluate_every : int, optional (default=0) How often to evaluate perplexity. Only used in `fit` method. set it to 0 or negative number to not evaluate perplexity in training at all. Evaluating perplexity can help you check convergence in training process, but it will also increase total training time. Evaluating perplexity in every iteration might increase training time up to two-fold.
total_samples : int, optional (default=1e6) Total number of documents. Only used in the :meth:`partial_fit` method.
perp_tol : float, optional (default=1e-1) Perplexity tolerance in batch learning. Only used when ``evaluate_every`` is greater than 0.
mean_change_tol : float, optional (default=1e-3) Stopping tolerance for updating document topic distribution in E-step.
max_doc_update_iter : int (default=100) Max number of iterations for updating document topic distribution in the E-step.
n_jobs : int or None, optional (default=None) The number of jobs to use in the E-step. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details.
verbose : int, optional (default=0) Verbosity level.
random_state : int, RandomState instance, default=None Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`.
Attributes ---------- components_ : array, n_components, n_features
Variational parameters for topic word distribution. Since the complete conditional for topic word distribution is a Dirichlet, ``components_i, j
`` can be viewed as pseudocount that represents the number of times word `j` was assigned to topic `i`. It can also be viewed as distribution over the words for each topic after normalization: ``model.components_ / model.components_.sum(axis=1):, np.newaxis
``.
n_batch_iter_ : int Number of iterations of the EM step.
n_iter_ : int Number of passes over the dataset.
bound_ : float Final perplexity score on training set.
doc_topic_prior_ : float Prior of document topic distribution `theta`. If the value is None, it is `1 / n_components`.
topic_word_prior_ : float Prior of topic word distribution `beta`. If the value is None, it is `1 / n_components`.
Examples -------- >>> from sklearn.decomposition import LatentDirichletAllocation >>> from sklearn.datasets import make_multilabel_classification >>> # This produces a feature matrix of token counts, similar to what >>> # CountVectorizer would produce on text. >>> X, _ = make_multilabel_classification(random_state=0) >>> lda = LatentDirichletAllocation(n_components=5, ... random_state=0) >>> lda.fit(X) LatentDirichletAllocation(...) >>> # get topics for some given samples: >>> lda.transform(X-2:
) array([0.00360392, 0.25499205, 0.0036211 , 0.64236448, 0.09541846],
[0.15297572, 0.00362644, 0.44412786, 0.39568399, 0.003586 ]
)
References ---------- .. 1
'Online Learning for Latent Dirichlet Allocation', Matthew D. Hoffman, David M. Blei, Francis Bach, 2010
2
'Stochastic Variational Inference', Matthew D. Hoffman, David M. Blei, Chong Wang, John Paisley, 2013
3
Matthew D. Hoffman's onlineldavb code. Link: https://github.com/blei-lab/onlineldavb