Compute Non-negative Matrix Factorization (NMF)
Find two non-negative matrices (W, H) whose product approximates the non- negative matrix X. This factorization can be used for example for dimensionality reduction, source separation or topic extraction.
The objective function is::
0.5 * ||X - WH||_Fro^2
- alpha * l1_ratio * ||vec(W)||_1
- alpha * l1_ratio * ||vec(H)||_1
- 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2
- 0.5 * alpha * (1 - l1_ratio) * ||H||_Fro^2
Where::
||A||_Fro^2 = \sum_,j A_j^2 (Frobenius norm) ||vec(A)||_1 = \sum_,j abs(A_j) (Elementwise L1 norm)
For multiplicative-update ('mu') solver, the Frobenius norm (0.5 * ||X - WH||_Fro^2) can be changed into another beta-divergence loss, by changing the beta_loss parameter.
The objective function is minimized with an alternating minimization of W and H. If H is given and update_H=False, it solves for W only.
Parameters ---------- X : array-like, shape (n_samples, n_features) Constant matrix.
W : array-like, shape (n_samples, n_components) If init='custom', it is used as initial guess for the solution.
H : array-like, shape (n_components, n_features) If init='custom', it is used as initial guess for the solution. If update_H=False, it is used as a constant, to solve for W only.
n_components : integer Number of components, if n_components is not set all features are kept.
init : None | 'random' | 'nndsvd' | 'nndsvda' | 'nndsvdar' | 'custom' Method used to initialize the procedure. Default: None.
Valid options:
- None: 'nndsvd' if n_components < n_features, otherwise 'random'.
- 'random': non-negative random matrices, scaled with: sqrt(X.mean() / n_components)
- 'nndsvd': Nonnegative Double Singular Value Decomposition (NNDSVD) initialization (better for sparseness)
- 'nndsvda': NNDSVD with zeros filled with the average of X (better when sparsity is not desired)
- 'nndsvdar': NNDSVD with zeros filled with small random values (generally faster, less accurate alternative to NNDSVDa for when sparsity is not desired)
- 'custom': use custom matrices W and H
.. versionchanged:: 0.23 The default value of `init` changed from 'random' to None in 0.23.
update_H : boolean, default: True Set to True, both W and H will be estimated from initial guesses. Set to False, only W will be estimated.
solver : 'cd' | 'mu' Numerical solver to use:
- 'cd' is a Coordinate Descent solver that uses Fast Hierarchical Alternating Least Squares (Fast HALS).
- 'mu' is a Multiplicative Update solver.
.. versionadded:: 0.17 Coordinate Descent solver.
.. versionadded:: 0.19 Multiplicative Update solver.
beta_loss : float or string, default 'frobenius' String must be in 'frobenius', 'kullback-leibler', 'itakura-saito'
. Beta divergence to be minimized, measuring the distance between X and the dot product WH. Note that values different from 'frobenius' (or 2) and 'kullback-leibler' (or 1) lead to significantly slower fits. Note that for beta_loss <= 0 (or 'itakura-saito'), the input matrix X cannot contain zeros. Used only in 'mu' solver.
.. versionadded:: 0.19
tol : float, default: 1e-4 Tolerance of the stopping condition.
max_iter : integer, default: 200 Maximum number of iterations before timing out.
alpha : double, default: 0. Constant that multiplies the regularization terms.
l1_ratio : double, default: 0. The regularization mixing parameter, with 0 <= l1_ratio <= 1. For l1_ratio = 0 the penalty is an elementwise L2 penalty (aka Frobenius Norm). For l1_ratio = 1 it is an elementwise L1 penalty. For 0 < l1_ratio < 1, the penalty is a combination of L1 and L2.
regularization : 'both' | 'components' | 'transformation' | None Select whether the regularization affects the components (H), the transformation (W), both or none of them.
random_state : int, RandomState instance, default=None Used for NMF initialisation (when ``init`` == 'nndsvdar' or 'random'), and in Coordinate Descent. Pass an int for reproducible results across multiple function calls. See :term:`Glossary <random_state>`.
verbose : integer, default: 0 The verbosity level.
shuffle : boolean, default: False If true, randomize the order of coordinates in the CD solver.
Returns ------- W : array-like, shape (n_samples, n_components) Solution to the non-negative least squares problem.
H : array-like, shape (n_components, n_features) Solution to the non-negative least squares problem.
n_iter : int Actual number of iterations.
Examples -------- >>> import numpy as np >>> X = np.array([1,1], [2, 1], [3, 1.2], [4, 1], [5, 0.8], [6, 1]
) >>> from sklearn.decomposition import non_negative_factorization >>> W, H, n_iter = non_negative_factorization(X, n_components=2, ... init='random', random_state=0)
References ---------- Cichocki, Andrzej, and P. H. A. N. Anh-Huy. 'Fast local algorithms for large scale nonnegative matrix and tensor factorizations.' IEICE transactions on fundamentals of electronics, communications and computer sciences 92.3: 708-721, 2009.
Fevotte, C., & Idier, J. (2011). Algorithms for nonnegative matrix factorization with the beta-divergence. Neural Computation, 23(9).