package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
val get_py : string -> Py.Object.t

Get an attribute of this module as a Py.Object.t. This is useful to pass a Python function to another function.

module LabelBinarizer : sig ... end
module NotFittedError : sig ... end
module OneVsOneClassifier : sig ... end
module OneVsRestClassifier : sig ... end
module OutputCodeClassifier : sig ... end
val check_X_y : ?accept_sparse:[ `S of string | `StringList of string list | `Bool of bool ] -> ?accept_large_sparse:bool -> ?dtype: [ `S of string | `Dtype of Np.Dtype.t | `Dtypes of Np.Dtype.t list | `None ] -> ?order:[ `C | `F ] -> ?copy:bool -> ?force_all_finite:[ `Allow_nan | `Bool of bool ] -> ?ensure_2d:bool -> ?allow_nd:bool -> ?multi_output:bool -> ?ensure_min_samples:int -> ?ensure_min_features:int -> ?y_numeric:bool -> ?estimator:[> `BaseEstimator ] Np.Obj.t -> x:[> `ArrayLike ] Np.Obj.t -> y:[> `ArrayLike ] Np.Obj.t -> unit -> Py.Object.t * Py.Object.t

Input validation for standard estimators.

Checks X and y for consistent length, enforces X to be 2D and y 1D. By default, X is checked to be non-empty and containing only finite values. Standard input checks are also applied to y, such as checking that y does not have np.nan or np.inf targets. For multi-label y, set multi_output=True to allow 2D and sparse y. If the dtype of X is object, attempt converting to float, raising on failure.

Parameters ---------- X : nd-array, list or sparse matrix Input data.

y : nd-array, list or sparse matrix Labels.

accept_sparse : string, boolean or list of string (default=False) Strings representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error.

accept_large_sparse : bool (default=True) If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by accept_sparse, accept_large_sparse will cause it to be accepted only if its indices are stored with a 32-bit dtype.

.. versionadded:: 0.20

dtype : string, type, list of types or None (default='numeric') Data type of result. If None, the dtype of the input is preserved. If 'numeric', dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list.

order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style.

copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion.

force_all_finite : boolean or 'allow-nan', (default=True) Whether to raise an error on np.inf, np.nan, pd.NA in X. This parameter does not influence whether y can have np.inf, np.nan, pd.NA values. The possibilities are:

  • True: Force all values of X to be finite.
  • False: accepts np.inf, np.nan, pd.NA in X.
  • 'allow-nan': accepts only np.nan or pd.NA values in X. Values cannot be infinite.

.. versionadded:: 0.20 ``force_all_finite`` accepts the string ``'allow-nan'``.

.. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan`

ensure_2d : boolean (default=True) Whether to raise a value error if X is not 2D.

allow_nd : boolean (default=False) Whether to allow X.ndim > 2.

multi_output : boolean (default=False) Whether to allow 2D y (array or sparse matrix). If false, y will be validated as a vector. y cannot have np.nan or np.inf values if multi_output=True.

ensure_min_samples : int (default=1) Make sure that X has a minimum number of samples in its first axis (rows for a 2D array).

ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when X has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check.

y_numeric : boolean (default=False) Whether to ensure that y has a numeric type. If dtype of y is object, it is converted to float64. Should only be used for regression algorithms.

estimator : str or estimator instance (default=None) If passed, include the name of the estimator in warning messages.

Returns ------- X_converted : object The converted and validated X.

y_converted : object The converted and validated y.

val check_array : ?accept_sparse:[ `S of string | `StringList of string list | `Bool of bool ] -> ?accept_large_sparse:bool -> ?dtype: [ `S of string | `Dtype of Np.Dtype.t | `Dtypes of Np.Dtype.t list | `None ] -> ?order:[ `C | `F ] -> ?copy:bool -> ?force_all_finite:[ `Allow_nan | `Bool of bool ] -> ?ensure_2d:bool -> ?allow_nd:bool -> ?ensure_min_samples:int -> ?ensure_min_features:int -> ?estimator:[> `BaseEstimator ] Np.Obj.t -> array:Py.Object.t -> unit -> Py.Object.t

Input validation on an array, list, sparse matrix or similar.

By default, the input is checked to be a non-empty 2D array containing only finite values. If the dtype of the array is object, attempt converting to float, raising on failure.

Parameters ---------- array : object Input object to check / convert.

accept_sparse : string, boolean or list/tuple of strings (default=False) Strings representing allowed sparse matrix formats, such as 'csc', 'csr', etc. If the input is sparse but not in the allowed format, it will be converted to the first listed format. True allows the input to be any format. False means that a sparse matrix input will raise an error.

accept_large_sparse : bool (default=True) If a CSR, CSC, COO or BSR sparse matrix is supplied and accepted by accept_sparse, accept_large_sparse=False will cause it to be accepted only if its indices are stored with a 32-bit dtype.

.. versionadded:: 0.20

dtype : string, type, list of types or None (default='numeric') Data type of result. If None, the dtype of the input is preserved. If 'numeric', dtype is preserved unless array.dtype is object. If dtype is a list of types, conversion on the first type is only performed if the dtype of the input is not in the list.

order : 'F', 'C' or None (default=None) Whether an array will be forced to be fortran or c-style. When order is None (default), then if copy=False, nothing is ensured about the memory layout of the output array; otherwise (copy=True) the memory layout of the returned array is kept as close as possible to the original array.

copy : boolean (default=False) Whether a forced copy will be triggered. If copy=False, a copy might be triggered by a conversion.

force_all_finite : boolean or 'allow-nan', (default=True) Whether to raise an error on np.inf, np.nan, pd.NA in array. The possibilities are:

  • True: Force all values of array to be finite.
  • False: accepts np.inf, np.nan, pd.NA in array.
  • 'allow-nan': accepts only np.nan and pd.NA values in array. Values cannot be infinite.

.. versionadded:: 0.20 ``force_all_finite`` accepts the string ``'allow-nan'``.

.. versionchanged:: 0.23 Accepts `pd.NA` and converts it into `np.nan`

ensure_2d : boolean (default=True) Whether to raise a value error if array is not 2D.

allow_nd : boolean (default=False) Whether to allow array.ndim > 2.

ensure_min_samples : int (default=1) Make sure that the array has a minimum number of samples in its first axis (rows for a 2D array). Setting to 0 disables this check.

ensure_min_features : int (default=1) Make sure that the 2D array has some minimum number of features (columns). The default value of 1 rejects empty datasets. This check is only enforced when the input data has effectively 2 dimensions or is originally 1D and ``ensure_2d`` is True. Setting to 0 disables this check.

estimator : str or estimator instance (default=None) If passed, include the name of the estimator in warning messages.

Returns ------- array_converted : object The converted and validated array.

val check_classification_targets : [> `ArrayLike ] Np.Obj.t -> Py.Object.t

Ensure that target y is of a non-regression type.

Only the following target types (as defined in type_of_target) are allowed: 'binary', 'multiclass', 'multiclass-multioutput', 'multilabel-indicator', 'multilabel-sequences'

Parameters ---------- y : array-like

val check_is_fitted : ?attributes: [ `S of string | `StringList of string list | `Arr of [> `ArrayLike ] Np.Obj.t ] -> ?msg:string -> ?all_or_any:[ `Callable of Py.Object.t | `PyObject of Py.Object.t ] -> estimator:[> `BaseEstimator ] Np.Obj.t -> unit -> Py.Object.t

Perform is_fitted validation for estimator.

Checks if the estimator is fitted by verifying the presence of fitted attributes (ending with a trailing underscore) and otherwise raises a NotFittedError with the given message.

This utility is meant to be used internally by estimators themselves, typically in their own predict / transform methods.

Parameters ---------- estimator : estimator instance. estimator instance for which the check is performed.

attributes : str, list or tuple of str, default=None Attribute name(s) given as string or a list/tuple of strings Eg.: ``'coef_', 'estimator_', ..., 'coef_'``

If `None`, `estimator` is considered fitted if there exist an attribute that ends with a underscore and does not start with double underscore.

msg : string The default error message is, 'This %(name)s instance is not fitted yet. Call 'fit' with appropriate arguments before using this estimator.'

For custom messages if '%(name)s' is present in the message string, it is substituted for the estimator name.

Eg. : 'Estimator, %(name)s, must be fitted before sparsifying'.

all_or_any : callable, all, any, default all Specify whether all or any of the given attributes must exist.

Returns ------- None

Raises ------ NotFittedError If the attributes are not found.

val check_random_state : [ `Optional of [ `I of int | `None ] | `RandomState of Py.Object.t ] -> Py.Object.t

Turn seed into a np.random.RandomState instance

Parameters ---------- seed : None | int | instance of RandomState If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError.

val clone : ?safe:bool -> estimator:[> `BaseEstimator ] Np.Obj.t -> unit -> Py.Object.t

Constructs a new estimator with the same parameters.

Clone does a deep copy of the model in an estimator without actually copying attached data. It yields a new estimator with the same parameters that has not been fit on any data.

Parameters ---------- estimator :

st, tuple, set

}

of estimator objects or estimator object The estimator or group of estimators to be cloned.

safe : bool, default=True If safe is false, clone will fall back to a deep copy on objects that are not estimators.

val delayed : ?check_pickle:Py.Object.t -> function_:Py.Object.t -> unit -> Py.Object.t

Decorator used to capture the arguments of a function.

val euclidean_distances : ?y:[> `ArrayLike ] Np.Obj.t -> ?y_norm_squared:[> `ArrayLike ] Np.Obj.t -> ?squared:bool -> ?x_norm_squared:[> `ArrayLike ] Np.Obj.t -> x:[> `ArrayLike ] Np.Obj.t -> unit -> [> `ArrayLike ] Np.Obj.t

Considering the rows of X (and Y=X) as vectors, compute the distance matrix between each pair of vectors.

For efficiency reasons, the euclidean distance between a pair of row vector x and y is computed as::

dist(x, y) = sqrt(dot(x, x) - 2 * dot(x, y) + dot(y, y))

This formulation has two advantages over other ways of computing distances. First, it is computationally efficient when dealing with sparse data. Second, if one argument varies but the other remains unchanged, then `dot(x, x)` and/or `dot(y, y)` can be pre-computed.

However, this is not the most precise way of doing this computation, and the distance matrix returned by this function may not be exactly symmetric as required by, e.g., ``scipy.spatial.distance`` functions.

Read more in the :ref:`User Guide <metrics>`.

Parameters ---------- X : array-like, sparse matrix, shape (n_samples_1, n_features)

Y : array-like, sparse matrix, shape (n_samples_2, n_features)

Y_norm_squared : array-like, shape (n_samples_2, ), optional Pre-computed dot-products of vectors in Y (e.g., ``(Y**2).sum(axis=1)``) May be ignored in some cases, see the note below.

squared : boolean, optional Return squared Euclidean distances.

X_norm_squared : array-like of shape (n_samples,), optional Pre-computed dot-products of vectors in X (e.g., ``(X**2).sum(axis=1)``) May be ignored in some cases, see the note below.

Notes ----- To achieve better accuracy, `X_norm_squared` and `Y_norm_squared` may be unused if they are passed as ``float32``.

Returns ------- distances : array, shape (n_samples_1, n_samples_2)

Examples -------- >>> from sklearn.metrics.pairwise import euclidean_distances >>> X = [0, 1], [1, 1] >>> # distance between rows of X >>> euclidean_distances(X, X) array([0., 1.], [1., 0.]) >>> # get distance to origin >>> euclidean_distances(X, [0, 0]) array([1. ], [1.41421356])

See also -------- paired_distances : distances betweens pairs of elements of X and Y.

val if_delegate_has_method : [ `S of string | `StringList of string list ] -> Py.Object.t

Create a decorator for methods that are delegated to a sub-estimator

This enables ducktyping by hasattr returning True according to the sub-estimator.

Parameters ---------- delegate : string, list of strings or tuple of strings Name of the sub-estimator that can be accessed as an attribute of the base object. If a list or a tuple of names are provided, the first sub-estimator that is an attribute of the base object will be used.

val is_classifier : [> `BaseEstimator ] Np.Obj.t -> bool

Return True if the given estimator is (probably) a classifier.

Parameters ---------- estimator : object Estimator object to test.

Returns ------- out : bool True if estimator is a classifier and False otherwise.

val is_regressor : [> `BaseEstimator ] Np.Obj.t -> bool

Return True if the given estimator is (probably) a regressor.

Parameters ---------- estimator : object Estimator object to test.

Returns ------- out : bool True if estimator is a regressor and False otherwise.

OCaml

Innovation. Community. Security.