Row-based list of lists sparse matrix
This is a structure for constructing sparse matrices incrementally. Note that inserting a single item can take linear time in the worst case; to construct a matrix efficiently, make sure the items are pre-sorted by index, per row.
This can be instantiated in several ways: lil_matrix(D) with a dense matrix or rank-2 ndarray D
lil_matrix(S) with another sparse matrix S (equivalent to S.tolil())
lil_matrix((M, N), dtype
) to construct an empty matrix with shape (M, N) dtype is optional, defaulting to dtype='d'.
Attributes ---------- dtype : dtype Data type of the matrix shape : 2-tuple Shape of the matrix ndim : int Number of dimensions (this is always 2) nnz Number of stored values, including explicit zeros data LIL format data array of the matrix rows LIL format row index array of the matrix
Notes -----
Sparse matrices can be used in arithmetic operations: they support addition, subtraction, multiplication, division, and matrix power.
Advantages of the LIL format
- supports flexible slicing
- changes to the matrix sparsity structure are efficient
Disadvantages of the LIL format
- arithmetic operations LIL + LIL are slow (consider CSR or CSC)
- slow column slicing (consider CSC)
- slow matrix vector products (consider CSR or CSC)
Intended Usage
- LIL is a convenient format for constructing sparse matrices
- once a matrix has been constructed, convert to CSR or CSC format for fast arithmetic and matrix vector operations
- consider using the COO format when constructing large matrices
Data Structure
- An array (``self.rows``) of rows, each of which is a sorted list of column indices of non-zero elements.
- The corresponding nonzero values are stored in similar fashion in ``self.data``.