Bernoulli Restricted Boltzmann Machine (RBM).
A Restricted Boltzmann Machine with binary visible units and binary hidden units. Parameters are estimated using Stochastic Maximum Likelihood (SML), also known as Persistent Contrastive Divergence (PCD) 2
.
The time complexity of this implementation is ``O(d ** 2)`` assuming d ~ n_features ~ n_components.
Read more in the :ref:`User Guide <rbm>`.
Parameters ---------- n_components : int, default=256 Number of binary hidden units.
learning_rate : float, default=0.1 The learning rate for weight updates. It is *highly* recommended to tune this hyper-parameter. Reasonable values are in the 10**0., -3.
range.
batch_size : int, default=10 Number of examples per minibatch.
n_iter : int, default=10 Number of iterations/sweeps over the training dataset to perform during training.
verbose : int, default=0 The verbosity level. The default, zero, means silent mode.
random_state : integer or RandomState, default=None A random number generator instance to define the state of the random permutations generator. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator.
Attributes ---------- intercept_hidden_ : array-like, shape (n_components,) Biases of the hidden units.
intercept_visible_ : array-like, shape (n_features,) Biases of the visible units.
components_ : array-like, shape (n_components, n_features) Weight matrix, where n_features in the number of visible units and n_components is the number of hidden units.
h_samples_ : array-like, shape (batch_size, n_components) Hidden Activation sampled from the model distribution, where batch_size in the number of examples per minibatch and n_components is the number of hidden units.
Examples --------
>>> import numpy as np >>> from sklearn.neural_network import BernoulliRBM >>> X = np.array([0, 0, 0], [0, 1, 1], [1, 0, 1], [1, 1, 1]
) >>> model = BernoulliRBM(n_components=2) >>> model.fit(X) BernoulliRBM(n_components=2)
References ----------
1
Hinton, G. E., Osindero, S. and Teh, Y. A fast learning algorithm for deep belief nets. Neural Computation 18, pp 1527-1554. https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf
2
Tieleman, T. Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient. International Conference on Machine Learning (ICML) 2008