package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type tag = [
  1. | `RidgeClassifier
]
type t = [ `BaseEstimator | `ClassifierMixin | `LinearClassifierMixin | `Object | `RidgeClassifier ] Obj.t
val of_pyobject : Py.Object.t -> t
val to_pyobject : [> tag ] Obj.t -> Py.Object.t
val as_classifier : t -> [ `ClassifierMixin ] Obj.t
val as_linear_classifier : t -> [ `LinearClassifierMixin ] Obj.t
val as_estimator : t -> [ `BaseEstimator ] Obj.t
val create : ?alpha:float -> ?fit_intercept:bool -> ?normalize:bool -> ?copy_X:bool -> ?max_iter:int -> ?tol:float -> ?class_weight:[ `DictIntToFloat of (int * float) list | `Balanced ] -> ?solver:[ `Auto | `Svd | `Cholesky | `Lsqr | `Sparse_cg | `Sag | `Saga ] -> ?random_state:int -> unit -> t

Classifier using Ridge regression.

This classifier first converts the target values into ``

1, 1

}

`` and then treats the problem as a regression task (multi-output regression in the multiclass case).

Read more in the :ref:`User Guide <ridge_regression>`.

Parameters ---------- alpha : float, default=1.0 Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to ``C^-1`` in other linear models such as LogisticRegression or LinearSVC.

fit_intercept : bool, default=True Whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (e.g. data is expected to be already centered).

normalize : bool, default=False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``.

copy_X : bool, default=True If True, X will be copied; else, it may be overwritten.

max_iter : int, default=None Maximum number of iterations for conjugate gradient solver. The default value is determined by scipy.sparse.linalg.

tol : float, default=1e-3 Precision of the solution.

class_weight : dict or 'balanced', default=None Weights associated with classes in the form ``class_label: weight``. If not given, all classes are supposed to have weight one.

The 'balanced' mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as ``n_samples / (n_classes * np.bincount(y))``.

solver : 'auto', 'svd', 'cholesky', 'lsqr', 'sparse_cg', 'sag', 'saga', default='auto' Solver to use in the computational routines:

  • 'auto' chooses the solver automatically based on the type of data.
  • 'svd' uses a Singular Value Decomposition of X to compute the Ridge coefficients. More stable for singular matrices than 'cholesky'.
  • 'cholesky' uses the standard scipy.linalg.solve function to obtain a closed-form solution.
  • 'sparse_cg' uses the conjugate gradient solver as found in scipy.sparse.linalg.cg. As an iterative algorithm, this solver is more appropriate than 'cholesky' for large-scale data (possibility to set `tol` and `max_iter`).
  • 'lsqr' uses the dedicated regularized least-squares routine scipy.sparse.linalg.lsqr. It is the fastest and uses an iterative procedure.
  • 'sag' uses a Stochastic Average Gradient descent, and 'saga' uses its unbiased and more flexible version named SAGA. Both methods use an iterative procedure, and are often faster than other solvers when both n_samples and n_features are large. Note that 'sag' and 'saga' fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing.

.. versionadded:: 0.17 Stochastic Average Gradient descent solver. .. versionadded:: 0.19 SAGA solver.

random_state : int, RandomState instance, default=None The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``solver`` == 'sag'.

Attributes ---------- coef_ : ndarray of shape (1, n_features) or (n_classes, n_features) Coefficient of the features in the decision function.

``coef_`` is of shape (1, n_features) when the given problem is binary.

intercept_ : float or ndarray of shape (n_targets,) Independent term in decision function. Set to 0.0 if ``fit_intercept = False``.

n_iter_ : None or ndarray of shape (n_targets,) Actual number of iterations for each target. Available only for sag and lsqr solvers. Other solvers will return None.

classes_ : ndarray of shape (n_classes,) The classes labels.

See Also -------- Ridge : Ridge regression. RidgeClassifierCV : Ridge classifier with built-in cross validation.

Notes ----- For multi-class classification, n_class classifiers are trained in a one-versus-all approach. Concretely, this is implemented by taking advantage of the multi-variate response support in Ridge.

Examples -------- >>> from sklearn.datasets import load_breast_cancer >>> from sklearn.linear_model import RidgeClassifier >>> X, y = load_breast_cancer(return_X_y=True) >>> clf = RidgeClassifier().fit(X, y) >>> clf.score(X, y) 0.9595...

val decision_function : x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Predict confidence scores for samples.

The confidence score for a sample is the signed distance of that sample to the hyperplane.

Parameters ---------- X : array_like or sparse matrix, shape (n_samples, n_features) Samples.

Returns ------- array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) Confidence scores per (sample, class) combination. In the binary case, confidence score for self.classes_1 where >0 means this class would be predicted.

val fit : ?sample_weight:[> `ArrayLike ] Np.Obj.t -> x:[> `ArrayLike ] Np.Obj.t -> y:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> t

Fit Ridge classifier model.

Parameters ---------- X : ndarray, sparse matrix of shape (n_samples, n_features) Training data.

y : ndarray of shape (n_samples,) Target values.

sample_weight : float or ndarray of shape (n_samples,), default=None Individual weights for each sample. If given a float, every sample will have the same weight.

.. versionadded:: 0.17 *sample_weight* support to Classifier.

Returns ------- self : object Instance of the estimator.

val get_params : ?deep:bool -> [> tag ] Obj.t -> Dict.t

Get parameters for this estimator.

Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns ------- params : mapping of string to any Parameter names mapped to their values.

val predict : x:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> [> `ArrayLike ] Np.Obj.t

Predict class labels for samples in X.

Parameters ---------- X : array_like or sparse matrix, shape (n_samples, n_features) Samples.

Returns ------- C : array, shape n_samples Predicted class label per sample.

val score : ?sample_weight:[> `ArrayLike ] Np.Obj.t -> x:[> `ArrayLike ] Np.Obj.t -> y:[> `ArrayLike ] Np.Obj.t -> [> tag ] Obj.t -> float

Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each sample that each label set be correctly predicted.

Parameters ---------- X : array-like of shape (n_samples, n_features) Test samples.

y : array-like of shape (n_samples,) or (n_samples, n_outputs) True labels for X.

sample_weight : array-like of shape (n_samples,), default=None Sample weights.

Returns ------- score : float Mean accuracy of self.predict(X) wrt. y.

val set_params : ?params:(string * Py.Object.t) list -> [> tag ] Obj.t -> t

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object.

Parameters ---------- **params : dict Estimator parameters.

Returns ------- self : object Estimator instance.

val coef_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute coef_: get value or raise Not_found if None.

val coef_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute coef_: get value as an option.

val intercept_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute intercept_: get value or raise Not_found if None.

val intercept_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute intercept_: get value as an option.

val n_iter_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute n_iter_: get value or raise Not_found if None.

val n_iter_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute n_iter_: get value as an option.

val classes_ : t -> [> `ArrayLike ] Np.Obj.t

Attribute classes_: get value or raise Not_found if None.

val classes_opt : t -> [> `ArrayLike ] Np.Obj.t option

Attribute classes_: get value as an option.

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.