package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type t
val of_pyobject : Py.Object.t -> t
val to_pyobject : t -> Py.Object.t
val create : ?n_nonzero_coefs:int -> ?tol:float -> ?fit_intercept:bool -> ?normalize:bool -> ?precompute:[ `Bool of bool | `Auto ] -> unit -> t

Orthogonal Matching Pursuit model (OMP)

Read more in the :ref:`User Guide <omp>`.

Parameters ---------- n_nonzero_coefs : int, optional Desired number of non-zero entries in the solution. If None (by default) this value is set to 10% of n_features.

tol : float, optional Maximum norm of the residual. If not None, overrides n_nonzero_coefs.

fit_intercept : boolean, optional whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize : boolean, optional, default True This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``.

precompute : True, False, 'auto', default 'auto' Whether to use a precomputed Gram and Xy matrix to speed up calculations. Improves performance when :term:`n_targets` or :term:`n_samples` is very large. Note that if you already have such matrices, you can pass them directly to the fit method.

Attributes ---------- coef_ : array, shape (n_features,) or (n_targets, n_features) parameter vector (w in the formula)

intercept_ : float or array, shape (n_targets,) independent term in decision function.

n_iter_ : int or array-like Number of active features across every target.

Examples -------- >>> from sklearn.linear_model import OrthogonalMatchingPursuit >>> from sklearn.datasets import make_regression >>> X, y = make_regression(noise=4, random_state=0) >>> reg = OrthogonalMatchingPursuit().fit(X, y) >>> reg.score(X, y) 0.9991... >>> reg.predict(X:1,) array(-78.3854...)

Notes ----- Orthogonal matching pursuit was introduced in G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries, IEEE Transactions on Signal Processing, Vol. 41, No. 12. (December 1993), pp. 3397-3415. (http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf)

This implementation is based on Rubinstein, R., Zibulevsky, M. and Elad, M., Efficient Implementation of the K-SVD Algorithm using Batch Orthogonal Matching Pursuit Technical Report - CS Technion, April 2008. https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf

See also -------- orthogonal_mp orthogonal_mp_gram lars_path Lars LassoLars decomposition.sparse_encode OrthogonalMatchingPursuitCV

val fit : x:Arr.t -> y:Arr.t -> t -> t

Fit the model using X, y as training data.

Parameters ---------- X : array-like, shape (n_samples, n_features) Training data.

y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values. Will be cast to X's dtype if necessary

Returns ------- self : object returns an instance of self.

val get_params : ?deep:bool -> t -> Dict.t

Get parameters for this estimator.

Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns ------- params : mapping of string to any Parameter names mapped to their values.

val predict : x:Arr.t -> t -> Arr.t

Predict using the linear model.

Parameters ---------- X : array_like or sparse matrix, shape (n_samples, n_features) Samples.

Returns ------- C : array, shape (n_samples,) Returns predicted values.

val score : ?sample_weight:Arr.t -> x:Arr.t -> y:Arr.t -> t -> float

Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters ---------- X : array-like of shape (n_samples, n_features) Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.

y : array-like of shape (n_samples,) or (n_samples, n_outputs) True values for X.

sample_weight : array-like of shape (n_samples,), default=None Sample weights.

Returns ------- score : float R^2 of self.predict(X) wrt. y.

Notes ----- The R2 score used when calling ``score`` on a regressor will use ``multioutput='uniform_average'`` from version 0.23 to keep consistent with :func:`~sklearn.metrics.r2_score`. This will influence the ``score`` method of all the multioutput regressors (except for :class:`~sklearn.multioutput.MultiOutputRegressor`). To specify the default value manually and avoid the warning, please either call :func:`~sklearn.metrics.r2_score` directly or make a custom scorer with :func:`~sklearn.metrics.make_scorer` (the built-in scorer ``'r2'`` uses ``multioutput='uniform_average'``).

val set_params : ?params:(string * Py.Object.t) list -> t -> t

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object.

Parameters ---------- **params : dict Estimator parameters.

Returns ------- self : object Estimator instance.

val coef_ : t -> Arr.t

Attribute coef_: get value or raise Not_found if None.

val coef_opt : t -> Arr.t option

Attribute coef_: get value as an option.

val intercept_ : t -> Arr.t

Attribute intercept_: get value or raise Not_found if None.

val intercept_opt : t -> Arr.t option

Attribute intercept_: get value as an option.

val n_iter_ : t -> [ `I of int | `Arr of Arr.t ]

Attribute n_iter_: get value or raise Not_found if None.

val n_iter_opt : t -> [ `I of int | `Arr of Arr.t ] option

Attribute n_iter_: get value as an option.

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.