package sklearn

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type t
val of_pyobject : Py.Object.t -> t
val to_pyobject : t -> Py.Object.t
val create : ?l1_ratio:[ `Float of float | `Ndarray of Ndarray.t ] -> ?eps:float -> ?n_alphas:int -> ?alphas:Ndarray.t -> ?fit_intercept:bool -> ?normalize:bool -> ?max_iter:int -> ?tol:float -> ?cv: [ `Int of int | `CrossValGenerator of Py.Object.t | `Ndarray of Ndarray.t ] -> ?copy_X:bool -> ?verbose:[ `Bool of bool | `Int of int ] -> ?n_jobs:[ `Int of int | `None ] -> ?random_state:[ `Int of int | `RandomState of Py.Object.t | `None ] -> ?selection:string -> unit -> t

Multi-task L1/L2 ElasticNet with built-in cross-validation.

See glossary entry for :term:`cross-validation estimator`.

The optimization objective for MultiTaskElasticNet is::

(1 / (2 * n_samples)) * ||Y - XW||^Fro_2

  1. alpha * l1_ratio * ||W||_21
  2. 0.5 * alpha * (1 - l1_ratio) * ||W||_Fro^2

Where::

||W||_21 = \sum_i \sqrt\sum_j w_{ij^2

}

i.e. the sum of norm of each row.

Read more in the :ref:`User Guide <multi_task_elastic_net>`.

.. versionadded:: 0.15

Parameters ---------- l1_ratio : float or array of floats The ElasticNet mixing parameter, with 0 < l1_ratio <= 1. For l1_ratio = 1 the penalty is an L1/L2 penalty. For l1_ratio = 0 it is an L2 penalty. For ``0 < l1_ratio < 1``, the penalty is a combination of L1/L2 and L2. This parameter can be a list, in which case the different values are tested by cross-validation and the one giving the best prediction score is used. Note that a good choice of list of values for l1_ratio is often to put more values close to 1 (i.e. Lasso) and less close to 0 (i.e. Ridge), as in ``.1, .5, .7, .9, .95, .99, 1``

eps : float, optional Length of the path. ``eps=1e-3`` means that ``alpha_min / alpha_max = 1e-3``.

n_alphas : int, optional Number of alphas along the regularization path

alphas : array-like, optional List of alphas where to compute the models. If not provided, set automatically.

fit_intercept : boolean whether to calculate the intercept for this model. If set to false, no intercept will be used in calculations (i.e. data is expected to be centered).

normalize : boolean, optional, default False This parameter is ignored when ``fit_intercept`` is set to False. If True, the regressors X will be normalized before regression by subtracting the mean and dividing by the l2-norm. If you wish to standardize, please use :class:`sklearn.preprocessing.StandardScaler` before calling ``fit`` on an estimator with ``normalize=False``.

max_iter : int, optional The maximum number of iterations

tol : float, optional The tolerance for the optimization: if the updates are smaller than ``tol``, the optimization code checks the dual gap for optimality and continues until it is smaller than ``tol``.

cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are:

  • None, to use the default 5-fold cross-validation,
  • integer, to specify the number of folds.
  • :term:`CV splitter`,
  • An iterable yielding (train, test) splits as arrays of indices.

For integer/None inputs, :class:`KFold` is used.

Refer :ref:`User Guide <cross_validation>` for the various cross-validation strategies that can be used here.

.. versionchanged:: 0.22 ``cv`` default value if None changed from 3-fold to 5-fold.

copy_X : boolean, optional, default True If ``True``, X will be copied; else, it may be overwritten.

verbose : bool or integer Amount of verbosity.

n_jobs : int or None, optional (default=None) Number of CPUs to use during the cross validation. Note that this is used only if multiple values for l1_ratio are given. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details.

random_state : int, RandomState instance or None, optional, default None The seed of the pseudo random number generator that selects a random feature to update. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``selection`` == 'random'.

selection : str, default 'cyclic' If set to 'random', a random coefficient is updated every iteration rather than looping over features sequentially by default. This (setting to 'random') often leads to significantly faster convergence especially when tol is higher than 1e-4.

Attributes ---------- intercept_ : array, shape (n_tasks,) Independent term in decision function.

coef_ : array, shape (n_tasks, n_features) Parameter vector (W in the cost function formula). Note that ``coef_`` stores the transpose of ``W``, ``W.T``.

alpha_ : float The amount of penalization chosen by cross validation

mse_path_ : array, shape (n_alphas, n_folds) or (n_l1_ratio, n_alphas, n_folds) mean square error for the test set on each fold, varying alpha

alphas_ : numpy array, shape (n_alphas,) or (n_l1_ratio, n_alphas) The grid of alphas used for fitting, for each l1_ratio

l1_ratio_ : float best l1_ratio obtained by cross-validation.

n_iter_ : int number of iterations run by the coordinate descent solver to reach the specified tolerance for the optimal alpha.

Examples -------- >>> from sklearn import linear_model >>> clf = linear_model.MultiTaskElasticNetCV(cv=3) >>> clf.fit([0,0], [1, 1], [2, 2], ... [0, 0], [1, 1], [2, 2]) MultiTaskElasticNetCV(cv=3) >>> print(clf.coef_) [0.52875032 0.46958558] [0.52875032 0.46958558] >>> print(clf.intercept_) 0.00166409 0.00166409

See also -------- MultiTaskElasticNet ElasticNetCV MultiTaskLassoCV

Notes ----- The algorithm used to fit the model is coordinate descent.

To avoid unnecessary memory duplication the X argument of the fit method should be directly passed as a Fortran-contiguous numpy array.

val fit : x:Ndarray.t -> y:Ndarray.t -> t -> t

Fit linear model with coordinate descent

Fit is on grid of alphas and best alpha estimated by cross-validation.

Parameters ---------- X : array-like, shape (n_samples, n_features) Training data. Pass directly as Fortran-contiguous data to avoid unnecessary memory duplication. If y is mono-output, X can be sparse.

y : array-like, shape (n_samples,) or (n_samples, n_targets) Target values

val get_params : ?deep:bool -> t -> Py.Object.t

Get parameters for this estimator.

Parameters ---------- deep : bool, default=True If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns ------- params : mapping of string to any Parameter names mapped to their values.

val predict : x:[ `Ndarray of Ndarray.t | `SparseMatrix of Csr_matrix.t ] -> t -> Ndarray.t

Predict using the linear model.

Parameters ---------- X : array_like or sparse matrix, shape (n_samples, n_features) Samples.

Returns ------- C : array, shape (n_samples,) Returns predicted values.

val score : ?sample_weight:Ndarray.t -> x:Ndarray.t -> y:Ndarray.t -> t -> float

Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters ---------- X : array-like of shape (n_samples, n_features) Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.

y : array-like of shape (n_samples,) or (n_samples, n_outputs) True values for X.

sample_weight : array-like of shape (n_samples,), default=None Sample weights.

Returns ------- score : float R^2 of self.predict(X) wrt. y.

Notes ----- The R2 score used when calling ``score`` on a regressor will use ``multioutput='uniform_average'`` from version 0.23 to keep consistent with :func:`~sklearn.metrics.r2_score`. This will influence the ``score`` method of all the multioutput regressors (except for :class:`~sklearn.multioutput.MultiOutputRegressor`). To specify the default value manually and avoid the warning, please either call :func:`~sklearn.metrics.r2_score` directly or make a custom scorer with :func:`~sklearn.metrics.make_scorer` (the built-in scorer ``'r2'`` uses ``multioutput='uniform_average'``).

val set_params : ?params:(string * Py.Object.t) list -> t -> t

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form ``<component>__<parameter>`` so that it's possible to update each component of a nested object.

Parameters ---------- **params : dict Estimator parameters.

Returns ------- self : object Estimator instance.

val intercept_ : t -> Ndarray.t

Attribute intercept_: see constructor for documentation

val coef_ : t -> Ndarray.t

Attribute coef_: see constructor for documentation

val alpha_ : t -> float

Attribute alpha_: see constructor for documentation

val mse_path_ : t -> Ndarray.t

Attribute mse_path_: see constructor for documentation

val alphas_ : t -> Ndarray.t

Attribute alphas_: see constructor for documentation

val l1_ratio_ : t -> float

Attribute l1_ratio_: see constructor for documentation

val n_iter_ : t -> int

Attribute n_iter_: see constructor for documentation

val to_string : t -> string

Print the object to a human-readable representation.

val show : t -> string

Print the object to a human-readable representation.

val pp : Format.formatter -> t -> unit

Pretty-print the object to a formatter.

OCaml

Innovation. Community. Security.