Legend:
Library
Module
Module type
Parameter
Class
Class type
Library
Module
Module type
Parameter
Class
Class type
include module type of Int64
Integer division. Raise Division_by_zero
if the second argument is zero. This division rounds the real quotient of its arguments towards zero, as specified for Pervasives.(/)
.
Integer remainder. If y
is not zero, the result of Int64.rem x y
satisfies the following property: x = Int64.add (Int64.mul (Int64.div x y) y) (Int64.rem x y)
. If y = 0
, Int64.rem x y
raises Division_by_zero
.
Int64.shift_left x y
shifts x
to the left by y
bits. The result is unspecified if y < 0
or y >= 64
.
Int64.shift_right x y
shifts x
to the right by y
bits. This is an arithmetic shift: the sign bit of x
is replicated and inserted in the vacated bits. The result is unspecified if y < 0
or y >= 64
.
Int64.shift_right_logical x y
shifts x
to the right by y
bits. This is a logical shift: zeroes are inserted in the vacated bits regardless of the sign of x
. The result is unspecified if y < 0
or y >= 64
.
Convert the given 64-bit integer (type int64
) to an integer (type int
). On 64-bit platforms, the 64-bit integer is taken modulo 263, i.e. the high-order bit is lost during the conversion. On 32-bit platforms, the 64-bit integer is taken modulo 231, i.e. the top 33 bits are lost during the conversion.
Convert the given floating-point number to a 64-bit integer, discarding the fractional part (truncate towards 0). The result of the conversion is undefined if, after truncation, the number is outside the range [Int64.min_int
, Int64.max_int
].
Convert the given 32-bit integer (type int32
) to a 64-bit integer (type int64
).
Convert the given 64-bit integer (type int64
) to a 32-bit integer (type int32
). The 64-bit integer is taken modulo 232, i.e. the top 32 bits are lost during the conversion.
Convert the given native integer (type nativeint
) to a 64-bit integer (type int64
).
Convert the given 64-bit integer (type int64
) to a native integer. On 32-bit platforms, the 64-bit integer is taken modulo 232. On 64-bit platforms, the conversion is exact.
Convert the given string to a 64-bit integer. The string is read in decimal (by default) or in hexadecimal, octal or binary if the string begins with 0x
, 0o
or 0b
respectively. Raise Failure "int_of_string"
if the given string is not a valid representation of an integer, or if the integer represented exceeds the range of integers representable in type int64
.
Return the internal representation of the given float according to the IEEE 754 floating-point 'double format' bit layout. Bit 63 of the result represents the sign of the float; bits 62 to 52 represent the (biased) exponent; bits 51 to 0 represent the mantissa.
Return the floating-point number whose internal representation, according to the IEEE 754 floating-point 'double format' bit layout, is the given int64
.
The comparison function for 64-bit integers, with the same specification as Pervasives.compare
. Along with the type t
, this function compare
allows the module Int64
to be passed as argument to the functors Set.Make
and Map.Make
.
val t_of_sexp : Sexplib.Sexp.t -> t
val sexp_of_t : t -> Sexplib.Sexp.t
include Qcow_s.SERIALISABLE with type t := t
val sizeof : t -> int
The size of a buffer needed to hold t
val read : Cstruct.t -> (t * Cstruct.t, [ `Msg of string ]) Result.result
Read a t
from the given buffer and return it, along with the unused remainder of the buffer. If the buffer cannot be parsed then return an error.
val write : t -> Cstruct.t -> (Cstruct.t, [ `Msg of string ]) Result.result
Write a t
into the given buffer. If the buffer is too small, then return an error. Return the unused remainder of the buffer.