package libsvm
Library
Module
Module type
Parameter
Class
Class type
val create : x:(int * float) list array -> y:Lacaml.D.vec -> t
create ~x ~y
constructs a problem from a sparse encoding x
of training vectors and a target vector y
.
val create_dense : x:Lacaml.D.mat -> y:Lacaml.D.vec -> t
create_dense ~x ~y
constructs a problem from a dense encoding x
of training vectors and a target vector y
. This is useful in particular in conjunction with the `PRECOMPUTED
type of kernel when invoking train
. In that case x
represents a kernel matrix of the following form:
1 K(x1,x1) K(x1,x2) ... K(x1,xL)
2 K(x2,x1) K(x2,x2) ... K(x2,xL)
...
L K(xL,x1) K(xL,x2) ... K(xL,xL)
where L denotes the number of training instances and K(x,y) is the precomputed kernel value of the two training instances x and y.
val get_n_samples : t -> int
get_n_samples prob
val get_n_feats : t -> int
get_n_feats prob
val get_targets : t -> Lacaml.D.vec
get_targets prob
val load : string -> t
load filename
loads a problem from the file filename
.
val output : t -> out_channel -> unit
output prob oc
outputs the problem prob
to an output channel oc
. NOTE: the function does not close the output channel.
val save : t -> string -> unit
save prob filename
saves the problem prob
to the file filename
.
val min_max_feats : t -> [ `Min of Lacaml.D.vec ] * [ `Max of Lacaml.D.vec ]
min_max_feats prob
val scale : ?lower:float -> ?upper:float -> t -> unit
scale ?lower ?upper prob
scales in place prob
such that each feature (attribute) lies in the range [lower
,upper
]. The default range is [-1,1].
val print : t -> unit
print prob
prints the internal representation of a problem. It is mainly used for debugging purposes.