module Bigarray: sig
.. end
Large, multi-dimensional, numerical arrays.
This module implements multi-dimensional arrays of integers and
floating-point numbers, thereafter referred to as 'big arrays'.
The implementation allows efficient sharing of large numerical
arrays between OCaml code and C or Fortran numerical libraries.
Concerning the naming conventions, users of this module are encouraged
to do open Bigarray
in their source, then refer to array types and
operations via short dot notation, e.g. Array1.t
or Array2.sub
.
Big arrays support all the OCaml ad-hoc polymorphic operations:
Element kinds
Big arrays can contain elements of the following kinds:
- IEEE single precision (32 bits) floating-point numbers
(
Bigarray.float32_elt
),
- IEEE double precision (64 bits) floating-point numbers
(
Bigarray.float64_elt
),
- IEEE single precision (2 * 32 bits) floating-point complex numbers
(
Bigarray.complex32_elt
),
- IEEE double precision (2 * 64 bits) floating-point complex numbers
(
Bigarray.complex64_elt
),
- 8-bit integers (signed or unsigned)
(
Bigarray.int8_signed_elt
or Bigarray.int8_unsigned_elt
),
- 16-bit integers (signed or unsigned)
(
Bigarray.int16_signed_elt
or Bigarray.int16_unsigned_elt
),
- OCaml integers (signed, 31 bits on 32-bit architectures,
63 bits on 64-bit architectures) (
Bigarray.int_elt
),
- 32-bit signed integer (
Bigarray.int32_elt
),
- 64-bit signed integers (
Bigarray.int64_elt
),
- platform-native signed integers (32 bits on 32-bit architectures,
64 bits on 64-bit architectures) (
Bigarray.nativeint_elt
).
Each element kind is represented at the type level by one of the
*_elt
types defined below (defined with a single constructor instead
of abstract types for technical injectivity reasons).
type
float32_elt =
type
float64_elt =
type
int8_signed_elt =
type
int8_unsigned_elt =
type
int16_signed_elt =
type
int16_unsigned_elt =
type
int32_elt =
type
int64_elt =
type
int_elt =
type
nativeint_elt =
type
complex32_elt =
type
complex64_elt =
type ('a, 'b)
kind =
| |
Float32 : (float, float32_elt) kind |
| |
Float64 : (float, float64_elt) kind |
| |
Int8_signed : (int, int8_signed_elt) kind |
| |
Int8_unsigned : (int, int8_unsigned_elt) kind |
| |
Int16_signed : (int, int16_signed_elt) kind |
| |
Int16_unsigned : (int, int16_unsigned_elt) kind |
| |
Int32 : (int32, int32_elt) kind |
| |
Int64 : (int64, int64_elt) kind |
| |
Int : (int, int_elt) kind |
| |
Nativeint : (nativeint, nativeint_elt) kind |
| |
Complex32 : (Complex.t, complex32_elt) kind |
| |
Complex64 : (Complex.t, complex64_elt) kind |
| |
Char : (char, int8_unsigned_elt) kind |
val float32 : (float, float32_elt) kind
val float64 : (float, float64_elt) kind
val complex32 : (Complex.t, complex32_elt) kind
val complex64 : (Complex.t, complex64_elt) kind
val int8_signed : (int, int8_signed_elt) kind
val int8_unsigned : (int, int8_unsigned_elt) kind
val int16_signed : (int, int16_signed_elt) kind
val int16_unsigned : (int, int16_unsigned_elt) kind
val int : (int, int_elt) kind
val int32 : (int32, int32_elt) kind
val int64 : (int64, int64_elt) kind
val nativeint : (nativeint, nativeint_elt) kind
val char : (char, int8_unsigned_elt) kind
As shown by the types of the values above,
big arrays of kind
float32_elt
and
float64_elt
are
accessed using the OCaml type
float
. Big arrays of complex kinds
complex32_elt
,
complex64_elt
are accessed with the OCaml type
Complex.t
. Big arrays of
integer kinds are accessed using the smallest OCaml integer
type large enough to represent the array elements:
int
for 8- and 16-bit integer bigarrays, as well as OCaml-integer
bigarrays;
int32
for 32-bit integer bigarrays;
int64
for 64-bit integer bigarrays; and
nativeint
for
platform-native integer bigarrays. Finally, big arrays of
kind
int8_unsigned_elt
can also be accessed as arrays of
characters instead of arrays of small integers, by using
the kind value
char
instead of
int8_unsigned
.
Array layouts
type
c_layout =
type
fortran_layout =
Supported layouts
The GADT type 'a layout
represents one of the two supported
memory layouts: C-style or Fortran-style. Its constructors are
re-exported as values below for backward-compatibility reasons.
type 'a
layout =
val c_layout : c_layout layout
val fortran_layout : fortran_layout layout
Generic arrays (of arbitrarily many dimensions)
module Genarray: sig
.. end
One-dimensional arrays
module Array1: sig
.. end
One-dimensional arrays.
Two-dimensional arrays
module Array2: sig
.. end
Two-dimensional arrays.
Three-dimensional arrays
module Array3: sig
.. end
Three-dimensional arrays.
Coercions between generic big arrays and fixed-dimension big arrays
val genarray_of_array1 : ('a, 'b, 'c) Array1.t -> ('a, 'b, 'c) Genarray.t
Return the generic big array corresponding to the given one-dimensional
big array.
val genarray_of_array2 : ('a, 'b, 'c) Array2.t -> ('a, 'b, 'c) Genarray.t
Return the generic big array corresponding to the given two-dimensional
big array.
val genarray_of_array3 : ('a, 'b, 'c) Array3.t -> ('a, 'b, 'c) Genarray.t
Return the generic big array corresponding to the given three-dimensional
big array.
val array1_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array1.t
Return the one-dimensional big array corresponding to the given
generic big array. Raise Invalid_argument
if the generic big array
does not have exactly one dimension.
val array2_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array2.t
Return the two-dimensional big array corresponding to the given
generic big array. Raise Invalid_argument
if the generic big array
does not have exactly two dimensions.
val array3_of_genarray : ('a, 'b, 'c) Genarray.t -> ('a, 'b, 'c) Array3.t
Return the three-dimensional big array corresponding to the given
generic big array. Raise Invalid_argument
if the generic big array
does not have exactly three dimensions.
Re-shaping big arrays
val reshape : ('a, 'b, 'c) Genarray.t ->
int array -> ('a, 'b, 'c) Genarray.t
reshape b [|d1;...;dN|]
converts the big array b
to a
N
-dimensional array of dimensions d1
...dN
. The returned
array and the original array b
share their data
and have the same layout. For instance, assuming that b
is a one-dimensional array of dimension 12, reshape b [|3;4|]
returns a two-dimensional array b'
of dimensions 3 and 4.
If b
has C layout, the element (x,y)
of b'
corresponds
to the element x * 3 + y
of b
. If b
has Fortran layout,
the element (x,y)
of b'
corresponds to the element
x + (y - 1) * 4
of b
.
The returned big array must have exactly the same number of
elements as the original big array b
. That is, the product
of the dimensions of b
must be equal to i1 * ... * iN
.
Otherwise, Invalid_argument
is raised.
val reshape_1 : ('a, 'b, 'c) Genarray.t -> int -> ('a, 'b, 'c) Array1.t
Specialized version of
Bigarray.reshape
for reshaping to
one-dimensional arrays.
val reshape_2 : ('a, 'b, 'c) Genarray.t ->
int -> int -> ('a, 'b, 'c) Array2.t
Specialized version of
Bigarray.reshape
for reshaping to
two-dimensional arrays.
val reshape_3 : ('a, 'b, 'c) Genarray.t ->
int -> int -> int -> ('a, 'b, 'c) Array3.t
Specialized version of
Bigarray.reshape
for reshaping to
three-dimensional arrays.