package ocaml-base-compiler
Array operations.
Array.get a n
returns the element number n
of array a
. The first element has number 0. The last element has number Array.length a - 1
. You can also write a.(n)
instead of Array.get a n
.
Array.set a n x
modifies array a
in place, replacing element number n
with x
. You can also write a.(n) <- x
instead of Array.set a n x
.
Array.make n x
returns a fresh array of length n
, initialized with x
. All the elements of this new array are initially physically equal to x
(in the sense of the ==
predicate). Consequently, if x
is mutable, it is shared among all elements of the array, and modifying x
through one of the array entries will modify all other entries at the same time.
Array.create_float n
returns a fresh float array of length n
, with uninitialized data.
Array.init n f
returns a fresh array of length n
, with element number i
initialized to the result of f i
. In other terms, Array.init n f
tabulates the results of f
applied to the integers 0
to n-1
.
Array.make_matrix dimx dimy e
returns a two-dimensional array (an array of arrays) with first dimension dimx
and second dimension dimy
. All the elements of this new matrix are initially physically equal to e
. The element (x,y
) of a matrix m
is accessed with the notation m.(x).(y)
.
Array.append v1 v2
returns a fresh array containing the concatenation of the arrays v1
and v2
.
Same as Array.append
, but concatenates a list of arrays.
Array.sub a start len
returns a fresh array of length len
, containing the elements number start
to start + len - 1
of array a
.
Array.copy a
returns a copy of a
, that is, a fresh array containing the same elements as a
.
Array.fill a ofs len x
modifies the array a
in place, storing x
in elements number ofs
to ofs + len - 1
.
Array.blit v1 o1 v2 o2 len
copies len
elements from array v1
, starting at element number o1
, to array v2
, starting at element number o2
. It works correctly even if v1
and v2
are the same array, and the source and destination chunks overlap.
Array.of_list l
returns a fresh array containing the elements of l
.
Iterators
Array.iter f a
applies function f
in turn to all the elements of a
. It is equivalent to f a.(0); f a.(1); ...; f a.(Array.length a - 1); ()
.
Same as Array.iter
, but the function is applied with the index of the element as first argument, and the element itself as second argument.
Array.map f a
applies function f
to all the elements of a
, and builds an array with the results returned by f
: [| f a.(0); f a.(1); ...; f a.(Array.length a - 1) |]
.
Same as Array.map
, but the function is applied to the index of the element as first argument, and the element itself as second argument.
Array.fold_left f x a
computes f (... (f (f x a.(0)) a.(1)) ...) a.(n-1)
, where n
is the length of the array a
.
Array.fold_right f a x
computes f a.(0) (f a.(1) ( ... (f a.(n-1) x) ...))
, where n
is the length of the array a
.
Iterators on two arrays
Array.iter2 f a b
applies function f
to all the elements of a
and b
.
Array.map2 f a b
applies function f
to all the elements of a
and b
, and builds an array with the results returned by f
: [| f a.(0) b.(0); ...; f a.(Array.length a - 1) b.(Array.length b - 1)|]
.
Array scanning
Array.for_all p [|a1; ...; an|]
checks if all elements of the array satisfy the predicate p
. That is, it returns (p a1) && (p a2) && ... && (p an)
.
Array.exists p [|a1; ...; an|]
checks if at least one element of the array satisfies the predicate p
. That is, it returns (p a1) || (p a2) || ... || (p an)
.
Same as Array.for_all
, but for a two-argument predicate.
Same as Array.exists
, but for a two-argument predicate.
mem a l
is true if and only if a
is structurally equal to an element of l
(i.e. there is an x
in l
such that compare a x = 0
).
Same as Array.mem
, but uses physical equality instead of structural equality to compare elements.
Sorting
Sort an array in increasing order according to a comparison function. The comparison function must return 0 if its arguments compare as equal, a positive integer if the first is greater, and a negative integer if the first is smaller (see below for a complete specification). For example, Stdlib.compare
is a suitable comparison function. After calling Array.sort
, the array is sorted in place in increasing order. Array.sort
is guaranteed to run in constant heap space and (at most) logarithmic stack space.
The current implementation uses Heap Sort. It runs in constant stack space.
Specification of the comparison function: Let a
be the array and cmp
the comparison function. The following must be true for all x
, y
, z
in a
:
cmp x y
> 0 if and only ifcmp y x
< 0- if
cmp x y
>= 0 andcmp y z
>= 0 thencmp x z
>= 0
When Array.sort
returns, a
contains the same elements as before, reordered in such a way that for all i and j valid indices of a
:
cmp a.(i) a.(j)
>= 0 if and only if i >= j
Same as Array.sort
, but the sorting algorithm is stable (i.e. elements that compare equal are kept in their original order) and not guaranteed to run in constant heap space.
The current implementation uses Merge Sort. It uses a temporary array of length n/2
, where n
is the length of the array. It is usually faster than the current implementation of Array.sort
.
Same as Array.sort
or Array.stable_sort
, whichever is faster on typical input.
Iterators
val to_seq : 'a array -> 'a Seq.t
Iterate on the array, in increasing order. Modifications of the array during iteration will be reflected in the iterator.
val to_seqi : 'a array -> (int * 'a) Seq.t
Iterate on the array, in increasing order, yielding indices along elements. Modifications of the array during iteration will be reflected in the iterator.
val of_seq : 'a Seq.t -> 'a array
Create an array from the generator